Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Saudi Med J ; 45(4): 424-432, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38657993

RESUMO

OBJECTIVES: To suggest the presence of a hyperimmune state in patients, and indicate that immune system attack on glycosylphosphatidylinositol (+) (GPI+) cells while escaping GPI- cell immunity. METHODS: We retrospective the immune cell subtypes in peripheral blood from 25 patients visiting Tianjin Medical University General Hospital, Tianjin, China, with classical paroxysmal nocturnal hemoglobinuria (PNH) and 50 healthy controls. RESULTS: The total CD3+ and CD3+CD8+ cell levels were higher in patients with PNH. The CD3+ cells are positively, correlated with lactate dehydrogenase (LDH; r=0.5453, p=0.0040), indirect bilirubin (r=0.4260, p=0.0379) and Flear- cells in monocytes (r=0.4099, p=0.0303). However, a negative correlation was observed between CD3+ cells and hemoglobin (r= -0.4530, p=0.0105). The total CD19+ cells decreased in patients, and CD19+ cells were negatively correlated with LDH (r= -0.5640, p=0.0077) and Flear- cells in monocytes (r= -0.4432, p=0.0341). Patients showed an increased proportion of total dendritic cells (DCs), with a higher proportion of myeloid DCs (mDCs) within the DC population. Moreover, the proportion of mDC/DC was positively correlated with CD59- cells (II + III types) in red cells (r=0.7941, p=0.0004), Flear- cells in granulocytes (r=0.5357, p=0.0396), and monocytes (r=0.6445, p=0.0095). CONCLUSION: Our results demonstrated that immune abnormalities are associated with PNH development.


Assuntos
Progressão da Doença , Hemoglobinúria Paroxística , Humanos , Hemoglobinúria Paroxística/imunologia , Hemoglobinúria Paroxística/sangue , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Estudos Retrospectivos , L-Lactato Desidrogenase/sangue , Monócitos/imunologia , Células Dendríticas/imunologia , Complexo CD3/metabolismo , Estudos de Casos e Controles , Glicosilfosfatidilinositóis/imunologia , Adulto Jovem , Antígenos CD19
2.
J Leukoc Biol ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315716

RESUMO

The mechanism underlying autophagy in paroxysmal nocturnal hemoglobinuria (PNH) remains largely unknown. We previously sequenced the entire genome exon of the CD59- cells from 13 patients with PNH and found genes such as CUX1 encoding Cut-like homeobox 1. Peripheral blood samples from nine patients with PNH and seven healthy controls were obtained to measure CUX1 expression. The correlation between CUX1 mRNA expression and PNH clinical indicators was analyzed. To simulate CUX1 expression in patients with PNH, we generated a panel of PNH cell lines by knocking out PIGA in K562 cell lines and transfected lentivirus with CUX1. CCK-8 and EDU assay assessed cell proliferation. Western blotting was used to detect Beclin1, LC3A, LC3B, ULK1, PI3K, AKT, p-AKT, mTOR, and p-mTOR protein levels. Autophagosomes were observed with transmission electron microscopy. Chloroquine was used to observe CUX1 expression in PNH after autophagy inhibition. Leukocytes from patients with PNH had lower levels of CUX1 mRNA expression and protein content than healthy controls. The lactose dehydrogenase level and the percentage of PNH clones were negatively correlated with CUX1 relative expression. We reduced CUX1 expression in a PIGA-knockout K562 cell line, leading to increased cell proliferation. Levels of autophagy markers Beclin1, LC3B, LC3A and ULK1 increased, and autophagosomes increased. Furthermore, PI3K/AKT/mTOR protein phosphorylation levels were lower. CUX1 expression did not change and cell proliferation decreased in CUX1 knocked down PNH cells after inhibition of autophagy by chloroquine. In brief, CUX1 loss-of-function mutation resulted in stronger autophagy in PNH.

3.
Mol Carcinog ; 62(10): 1487-1503, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37314216

RESUMO

Cell division cycle 123 (CDC123) has been implicated in a variety of human diseases. However, it remains unclear whether CDC123 plays a role in tumorigenesis and how its abundance is regulated. In this study, we found that CDC123 was highly expressed in breast cancer cells, and its high expression was positively correlated with a poor prognosis. Knowndown of CDC123 impaired the proliferation of breast cancer cells. Mechanistically, we identified a deubiquitinase, ubiquitin-specific peptidase 9, X-linked (USP9X), that could physically interact with and deubiquitinate K48-linked ubiquitinated CDC123 at the K308 site. Therefore, the expression of CDC123 was positively correlated with USP9X in breast cancer cells. In addition, we found that deletion of either USP9X or CDC123 led to altered expression of cell cycle-related genes and resulted in the accumulation of cells population in the G0/G1 phase, thereby suppressing cell proliferation. Treatment with the deubiquitinase inhibitor of USP9X, WP1130 (Degrasyn, a small molecule compound that USP9X deubiquitinase inhibitor), also led to the accumulation of breast cancer cells in the G0/G1 phase, but this effect could be rescued by overexpression of CDC123. Furthermore, our study revealed that the USP9X/CDC123 axis promotes the occurrence and development of breast cancer through regulating the cell cycle, and suggests that it may be a potential target for breast cancer intervention. In conclusion, our study demonstrates that USP9X is a key regulator of CDC123, providing a novel pathway for the maintenance of CDC123 abundance in cells, and supports USP9X/CDC123 as a potential target for breast cancer intervention through regulating the cell cycle.


Assuntos
Neoplasias da Mama , Transformação Celular Neoplásica , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Enzimas Desubiquitinantes , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
4.
Int Immunopharmacol ; 115: 109468, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36608443

RESUMO

Paroxysmal nocturnal haemoglobinuria (PNH) is a clonal disorder of haematopoietic stem cells caused by somatic PIGA mutations, resulting in a deficiency in glycosylphosphatidylinositol-anchored proteins (GPI-AP). Some researchers uncovered that PNH cells displayed a GPI-mediated defect in lipid-raft formation. However, Lipid rafts play a crucial role in signaling, the signaling underlying lipid rafts in PNH have not yet been addressed. In this study, we reported that, IFN-α was significantly increased in PNH plasma compared with normal controls. And PNH cells more resistant to the inhibitory colony[1]-forming activity of IFN-α. Here we have already established PIGA knock out K562 cell line by CRISPR/cas9, the most recognized in vitro model of PNH. PNH cells showed obviously defected endocytosis of IFNα/ßRs in lipid rafts, causing suppressed STAT2 activation and the inflammatory response. We further investigated the possible mechanisms of interferon signaling endosomes mediate by cavin1. Our findings provide crucial insight into the process of reduced IFNα signal transduction in PNH cells mediated by lipid rafts and suggest that cavin1 are a potential target for suppression of IFN-α inflammatory signaling. These results might further explain the growth advantage of PNH cells in an unfavorable microenvironment.


Assuntos
Hemoglobinúria Paroxística , Humanos , Endossomos/metabolismo , Células-Tronco Hematopoéticas , Hemoglobinúria Paroxística/genética , Hemoglobinúria Paroxística/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo , Interferon-alfa/metabolismo
5.
J Leukoc Biol ; 112(2): 243-255, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34990019

RESUMO

Paroxysmal nocturnal hemoglobinuria (PNH) is a disease involving hematopoietic stem cell membrane defects caused by acquired phosphatidylinositol glycan anchor biosynthesis class A (PIGA) mutations. In this study, 97 target genes were selected as a target gene panel and screened in 23 PNH patients via the sequencing of specific DNA target regions. Through functional analysis, we identified that suppressor-of-Zeste 12 (SUZ12) may be involved in the proliferation of PNH clones. mRNA and protein expression levels of SUZ12 and the trimethylation level of histone H3 at lysine 27 (H3K27) in CD59- peripheral blood leukocytes from PNH patients were higher than those in CD59+ cells from PNH patients and peripheral blood leukocytes from healthy controls. In addition, the relative expression of SUZ12 in PNH patients was positively correlated with Ret% and the proportion of PNH clones. When we knocked down SUZ12 expression in a PIGA knockdown THP-1 cell line (THP-1 KD cells), the trimethylation of histone H3K27(H3K27me3) and cell proliferation decreased, apoptosis increased, and cell cycle arrest occurred in G0/G1 phase. In conclusion, SUZ12 participates in the proliferation of PNH clones by regulating histone H3K27me3 levels. Our results may provide new therapeutic targets and possibilities for PNH patients.


Assuntos
Hemoglobinúria Paroxística , Histonas , Proteínas de Neoplasias , Fatores de Transcrição , Proliferação de Células , Células Clonais/metabolismo , Hemoglobinúria Paroxística/genética , Hemoglobinúria Paroxística/metabolismo , Hemoglobinúria Paroxística/terapia , Humanos , Proteínas de Neoplasias/genética , Fatores de Transcrição/genética
6.
Exp Hematol Oncol ; 11(1): 1, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033195

RESUMO

Paroxysmal nocturnal hemoglobinuria is a clonal disease caused by PIG-A mutation of hematopoietic stem cells. At present, there is no suitable PNH animal model for basic research, therefore, it is urgent to establish a stable animal model. We constructed a Pig-a conditional knock-out mice model by ES targeting technique and Vav-iCre. The expressions of GPI and GPI-AP were almost completely absent in CKO homozygote mice, and the proportion of the deficiency remained stable from birth. In CKO heterozygote mice, the proportion of the deficiency of GPI and GPI-AP was partially absent and decreased gradually from birth until it reached a stable level at 3 months after birth and remained there for life. Compared with normal C57BL/6N mice and Flox mice, pancytopenia was found in CKO homozygous mice, and leukopenia and anemia were found in CKO heterozygotes mice. Meanwhile, in CKO mice, the serum LDH, TBIL, IBIL, complement C5b-9 levels were increased, and the concentration of plasma FHb was increased. Hemosiderin granulosa cells can be seen more easily in the spleens of CKO mice. What's more, CKO mice had stable transcription characteristics. In conclusion, our mouse model has stable GPI-deficient and mild hemolysis, which may be an ideal in vivo experimental model for PNH.

7.
Cell Immunol ; 364: 104343, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33774556

RESUMO

This study investigated the expression status of signaling lymphocytic activation molecule family 6 (SLAMF6) in CD8+ T lymphocytes of patients with severe aplastic anemia (SAA) and its association with the clinical indicators and immune status of the disease. The effects of SLAMF6 on the function and apoptosis of CD8+ T lymphocytes were also investigated. Levels of SLAMF6 and SLAM-associated protein in the CD8+ T lymphocytes of SAA patients were significantly lower than the normal controls, and they were positively correlated with hematopoietic-related indicators but negatively correlated with the levels of functional molecules of CD8+ T lymphocytes. After blocking SLAMF6, CD8+ T lymphocyte functional molecule secretion was upregulated and RICD was downregulated in SAA patients, suggesting that SLAMF6, is involved in the pathogenetic mechanism of SAA by regulating CD8+ T lymphocyte functional molecule secretion and RICD levels. SLAMF6 may be a novel target for the regulation of CD8+ T lymphocyte homeostasis.


Assuntos
Anemia Aplástica/metabolismo , Linfócitos T CD8-Positivos/imunologia , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Adulto , Idoso , Anemia Aplástica/imunologia , Apoptose , Citotoxicidade Imunológica , Regulação para Baixo , Feminino , Hematopoese , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...